3.117 \(\int \csc ^3(a+b x) \sin ^{\frac{5}{2}}(2 a+2 b x) \, dx\)

Optimal. Leaf size=127 \[ \frac{4 \sin (a+b x) \sin ^{\frac{3}{2}}(2 a+2 b x)}{b}-\frac{3 \sin ^{-1}(\cos (a+b x)-\sin (a+b x))}{b}-\frac{6 \sqrt{\sin (2 a+2 b x)} \cos (a+b x)}{b}+\frac{\sin ^{\frac{7}{2}}(2 a+2 b x) \csc ^3(a+b x)}{b}+\frac{3 \log \left (\sin (a+b x)+\sqrt{\sin (2 a+2 b x)}+\cos (a+b x)\right )}{b} \]

[Out]

(-3*ArcSin[Cos[a + b*x] - Sin[a + b*x]])/b + (3*Log[Cos[a + b*x] + Sin[a + b*x] + Sqrt[Sin[2*a + 2*b*x]]])/b -
 (6*Cos[a + b*x]*Sqrt[Sin[2*a + 2*b*x]])/b + (4*Sin[a + b*x]*Sin[2*a + 2*b*x]^(3/2))/b + (Csc[a + b*x]^3*Sin[2
*a + 2*b*x]^(7/2))/b

________________________________________________________________________________________

Rubi [A]  time = 0.130911, antiderivative size = 127, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.227, Rules used = {4300, 4308, 4301, 4302, 4305} \[ \frac{4 \sin (a+b x) \sin ^{\frac{3}{2}}(2 a+2 b x)}{b}-\frac{3 \sin ^{-1}(\cos (a+b x)-\sin (a+b x))}{b}-\frac{6 \sqrt{\sin (2 a+2 b x)} \cos (a+b x)}{b}+\frac{\sin ^{\frac{7}{2}}(2 a+2 b x) \csc ^3(a+b x)}{b}+\frac{3 \log \left (\sin (a+b x)+\sqrt{\sin (2 a+2 b x)}+\cos (a+b x)\right )}{b} \]

Antiderivative was successfully verified.

[In]

Int[Csc[a + b*x]^3*Sin[2*a + 2*b*x]^(5/2),x]

[Out]

(-3*ArcSin[Cos[a + b*x] - Sin[a + b*x]])/b + (3*Log[Cos[a + b*x] + Sin[a + b*x] + Sqrt[Sin[2*a + 2*b*x]]])/b -
 (6*Cos[a + b*x]*Sqrt[Sin[2*a + 2*b*x]])/b + (4*Sin[a + b*x]*Sin[2*a + 2*b*x]^(3/2))/b + (Csc[a + b*x]^3*Sin[2
*a + 2*b*x]^(7/2))/b

Rule 4300

Int[((e_.)*sin[(a_.) + (b_.)*(x_)])^(m_)*((g_.)*sin[(c_.) + (d_.)*(x_)])^(p_), x_Symbol] :> Simp[((e*Sin[a + b
*x])^m*(g*Sin[c + d*x])^(p + 1))/(2*b*g*(m + p + 1)), x] + Dist[(m + 2*p + 2)/(e^2*(m + p + 1)), Int[(e*Sin[a
+ b*x])^(m + 2)*(g*Sin[c + d*x])^p, x], x] /; FreeQ[{a, b, c, d, e, g, p}, x] && EqQ[b*c - a*d, 0] && EqQ[d/b,
 2] &&  !IntegerQ[p] && LtQ[m, -1] && NeQ[m + 2*p + 2, 0] && NeQ[m + p + 1, 0] && IntegersQ[2*m, 2*p]

Rule 4308

Int[((g_.)*sin[(c_.) + (d_.)*(x_)])^(p_)/sin[(a_.) + (b_.)*(x_)], x_Symbol] :> Dist[2*g, Int[Cos[a + b*x]*(g*S
in[c + d*x])^(p - 1), x], x] /; FreeQ[{a, b, c, d, g, p}, x] && EqQ[b*c - a*d, 0] && EqQ[d/b, 2] &&  !IntegerQ
[p] && IntegerQ[2*p]

Rule 4301

Int[cos[(a_.) + (b_.)*(x_)]*((g_.)*sin[(c_.) + (d_.)*(x_)])^(p_), x_Symbol] :> Simp[(2*Sin[a + b*x]*(g*Sin[c +
 d*x])^p)/(d*(2*p + 1)), x] + Dist[(2*p*g)/(2*p + 1), Int[Sin[a + b*x]*(g*Sin[c + d*x])^(p - 1), x], x] /; Fre
eQ[{a, b, c, d, g}, x] && EqQ[b*c - a*d, 0] && EqQ[d/b, 2] &&  !IntegerQ[p] && GtQ[p, 0] && IntegerQ[2*p]

Rule 4302

Int[sin[(a_.) + (b_.)*(x_)]*((g_.)*sin[(c_.) + (d_.)*(x_)])^(p_), x_Symbol] :> Simp[(-2*Cos[a + b*x]*(g*Sin[c
+ d*x])^p)/(d*(2*p + 1)), x] + Dist[(2*p*g)/(2*p + 1), Int[Cos[a + b*x]*(g*Sin[c + d*x])^(p - 1), x], x] /; Fr
eeQ[{a, b, c, d, g}, x] && EqQ[b*c - a*d, 0] && EqQ[d/b, 2] &&  !IntegerQ[p] && GtQ[p, 0] && IntegerQ[2*p]

Rule 4305

Int[cos[(a_.) + (b_.)*(x_)]/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> -Simp[ArcSin[Cos[a + b*x] - Sin[a + b*
x]]/d, x] + Simp[Log[Cos[a + b*x] + Sin[a + b*x] + Sqrt[Sin[c + d*x]]]/d, x] /; FreeQ[{a, b, c, d}, x] && EqQ[
b*c - a*d, 0] && EqQ[d/b, 2]

Rubi steps

\begin{align*} \int \csc ^3(a+b x) \sin ^{\frac{5}{2}}(2 a+2 b x) \, dx &=\frac{\csc ^3(a+b x) \sin ^{\frac{7}{2}}(2 a+2 b x)}{b}+8 \int \csc (a+b x) \sin ^{\frac{5}{2}}(2 a+2 b x) \, dx\\ &=\frac{\csc ^3(a+b x) \sin ^{\frac{7}{2}}(2 a+2 b x)}{b}+16 \int \cos (a+b x) \sin ^{\frac{3}{2}}(2 a+2 b x) \, dx\\ &=\frac{4 \sin (a+b x) \sin ^{\frac{3}{2}}(2 a+2 b x)}{b}+\frac{\csc ^3(a+b x) \sin ^{\frac{7}{2}}(2 a+2 b x)}{b}+12 \int \sin (a+b x) \sqrt{\sin (2 a+2 b x)} \, dx\\ &=-\frac{6 \cos (a+b x) \sqrt{\sin (2 a+2 b x)}}{b}+\frac{4 \sin (a+b x) \sin ^{\frac{3}{2}}(2 a+2 b x)}{b}+\frac{\csc ^3(a+b x) \sin ^{\frac{7}{2}}(2 a+2 b x)}{b}+6 \int \frac{\cos (a+b x)}{\sqrt{\sin (2 a+2 b x)}} \, dx\\ &=-\frac{3 \sin ^{-1}(\cos (a+b x)-\sin (a+b x))}{b}+\frac{3 \log \left (\cos (a+b x)+\sin (a+b x)+\sqrt{\sin (2 a+2 b x)}\right )}{b}-\frac{6 \cos (a+b x) \sqrt{\sin (2 a+2 b x)}}{b}+\frac{4 \sin (a+b x) \sin ^{\frac{3}{2}}(2 a+2 b x)}{b}+\frac{\csc ^3(a+b x) \sin ^{\frac{7}{2}}(2 a+2 b x)}{b}\\ \end{align*}

Mathematica [A]  time = 0.129792, size = 70, normalized size = 0.55 \[ \frac{-3 \sin ^{-1}(\cos (a+b x)-\sin (a+b x))+\sin ^{\frac{3}{2}}(2 (a+b x)) \csc (a+b x)+3 \log \left (\sin (a+b x)+\sqrt{\sin (2 (a+b x))}+\cos (a+b x)\right )}{b} \]

Antiderivative was successfully verified.

[In]

Integrate[Csc[a + b*x]^3*Sin[2*a + 2*b*x]^(5/2),x]

[Out]

(-3*ArcSin[Cos[a + b*x] - Sin[a + b*x]] + 3*Log[Cos[a + b*x] + Sin[a + b*x] + Sqrt[Sin[2*(a + b*x)]]] + Csc[a
+ b*x]*Sin[2*(a + b*x)]^(3/2))/b

________________________________________________________________________________________

Maple [C]  time = 7.616, size = 243, normalized size = 1.9 \begin{align*}{\frac{16}{3\,b}\sqrt{-{\tan \left ({\frac{bx}{2}}+{\frac{a}{2}} \right ) \left ( \left ( \tan \left ({\frac{bx}{2}}+{\frac{a}{2}} \right ) \right ) ^{2}-1 \right ) ^{-1}}} \left ( \sqrt{\tan \left ({\frac{bx}{2}}+{\frac{a}{2}} \right ) +1}\sqrt{-2\,\tan \left ( 1/2\,bx+a/2 \right ) +2}\sqrt{-\tan \left ({\frac{bx}{2}}+{\frac{a}{2}} \right ) }{\it EllipticF} \left ( \sqrt{\tan \left ({\frac{bx}{2}}+{\frac{a}{2}} \right ) +1},{\frac{\sqrt{2}}{2}} \right ) \left ( \tan \left ({\frac{bx}{2}}+{\frac{a}{2}} \right ) \right ) ^{2}-\sqrt{\tan \left ({\frac{bx}{2}}+{\frac{a}{2}} \right ) +1}\sqrt{-2\,\tan \left ( 1/2\,bx+a/2 \right ) +2}\sqrt{-\tan \left ({\frac{bx}{2}}+{\frac{a}{2}} \right ) }{\it EllipticF} \left ( \sqrt{\tan \left ({\frac{bx}{2}}+{\frac{a}{2}} \right ) +1},{\frac{\sqrt{2}}{2}} \right ) - \left ( \tan \left ({\frac{bx}{2}}+{\frac{a}{2}} \right ) \right ) ^{3}-\tan \left ({\frac{bx}{2}}+{\frac{a}{2}} \right ) \right ){\frac{1}{\sqrt{ \left ( \tan \left ({\frac{bx}{2}}+{\frac{a}{2}} \right ) \right ) ^{3}-\tan \left ({\frac{bx}{2}}+{\frac{a}{2}} \right ) }}}{\frac{1}{\sqrt{\tan \left ({\frac{bx}{2}}+{\frac{a}{2}} \right ) \left ( \left ( \tan \left ({\frac{bx}{2}}+{\frac{a}{2}} \right ) \right ) ^{2}-1 \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csc(b*x+a)^3*sin(2*b*x+2*a)^(5/2),x)

[Out]

16/3*(-tan(1/2*b*x+1/2*a)/(tan(1/2*b*x+1/2*a)^2-1))^(1/2)*((tan(1/2*b*x+1/2*a)+1)^(1/2)*(-2*tan(1/2*b*x+1/2*a)
+2)^(1/2)*(-tan(1/2*b*x+1/2*a))^(1/2)*EllipticF((tan(1/2*b*x+1/2*a)+1)^(1/2),1/2*2^(1/2))*tan(1/2*b*x+1/2*a)^2
-(tan(1/2*b*x+1/2*a)+1)^(1/2)*(-2*tan(1/2*b*x+1/2*a)+2)^(1/2)*(-tan(1/2*b*x+1/2*a))^(1/2)*EllipticF((tan(1/2*b
*x+1/2*a)+1)^(1/2),1/2*2^(1/2))-tan(1/2*b*x+1/2*a)^3-tan(1/2*b*x+1/2*a))/(tan(1/2*b*x+1/2*a)^3-tan(1/2*b*x+1/2
*a))^(1/2)/(tan(1/2*b*x+1/2*a)*(tan(1/2*b*x+1/2*a)^2-1))^(1/2)/b

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \csc \left (b x + a\right )^{3} \sin \left (2 \, b x + 2 \, a\right )^{\frac{5}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(b*x+a)^3*sin(2*b*x+2*a)^(5/2),x, algorithm="maxima")

[Out]

integrate(csc(b*x + a)^3*sin(2*b*x + 2*a)^(5/2), x)

________________________________________________________________________________________

Fricas [B]  time = 0.539785, size = 737, normalized size = 5.8 \begin{align*} \frac{8 \, \sqrt{2} \sqrt{\cos \left (b x + a\right ) \sin \left (b x + a\right )} \cos \left (b x + a\right ) + 6 \, \arctan \left (-\frac{\sqrt{2} \sqrt{\cos \left (b x + a\right ) \sin \left (b x + a\right )}{\left (\cos \left (b x + a\right ) - \sin \left (b x + a\right )\right )} + \cos \left (b x + a\right ) \sin \left (b x + a\right )}{\cos \left (b x + a\right )^{2} + 2 \, \cos \left (b x + a\right ) \sin \left (b x + a\right ) - 1}\right ) - 6 \, \arctan \left (-\frac{2 \, \sqrt{2} \sqrt{\cos \left (b x + a\right ) \sin \left (b x + a\right )} - \cos \left (b x + a\right ) - \sin \left (b x + a\right )}{\cos \left (b x + a\right ) - \sin \left (b x + a\right )}\right ) - 3 \, \log \left (-32 \, \cos \left (b x + a\right )^{4} + 4 \, \sqrt{2}{\left (4 \, \cos \left (b x + a\right )^{3} -{\left (4 \, \cos \left (b x + a\right )^{2} + 1\right )} \sin \left (b x + a\right ) - 5 \, \cos \left (b x + a\right )\right )} \sqrt{\cos \left (b x + a\right ) \sin \left (b x + a\right )} + 32 \, \cos \left (b x + a\right )^{2} + 16 \, \cos \left (b x + a\right ) \sin \left (b x + a\right ) + 1\right )}{4 \, b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(b*x+a)^3*sin(2*b*x+2*a)^(5/2),x, algorithm="fricas")

[Out]

1/4*(8*sqrt(2)*sqrt(cos(b*x + a)*sin(b*x + a))*cos(b*x + a) + 6*arctan(-(sqrt(2)*sqrt(cos(b*x + a)*sin(b*x + a
))*(cos(b*x + a) - sin(b*x + a)) + cos(b*x + a)*sin(b*x + a))/(cos(b*x + a)^2 + 2*cos(b*x + a)*sin(b*x + a) -
1)) - 6*arctan(-(2*sqrt(2)*sqrt(cos(b*x + a)*sin(b*x + a)) - cos(b*x + a) - sin(b*x + a))/(cos(b*x + a) - sin(
b*x + a))) - 3*log(-32*cos(b*x + a)^4 + 4*sqrt(2)*(4*cos(b*x + a)^3 - (4*cos(b*x + a)^2 + 1)*sin(b*x + a) - 5*
cos(b*x + a))*sqrt(cos(b*x + a)*sin(b*x + a)) + 32*cos(b*x + a)^2 + 16*cos(b*x + a)*sin(b*x + a) + 1))/b

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(b*x+a)**3*sin(2*b*x+2*a)**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \csc \left (b x + a\right )^{3} \sin \left (2 \, b x + 2 \, a\right )^{\frac{5}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(b*x+a)^3*sin(2*b*x+2*a)^(5/2),x, algorithm="giac")

[Out]

integrate(csc(b*x + a)^3*sin(2*b*x + 2*a)^(5/2), x)